from flask import Flask, request import numpy as np | |
import pickle | |
import pandas as pd | |
import flasgger | |
from flasgger import Swagger | |
app=Flask(__name__) | |
Swagger(app) | |
pickle_in = open("classifier.pkl","rb") | |
classifier=pickle.load(pickle_in) | |
@app.route('/') | |
def welcome(): | |
return "Welcome All" | |
@app.route('/predict',methods=["Get"]) | |
def predict_note_authentication(): | |
"""Let's Authenticate the Banks Note | |
This is using docstrings for specifications. | |
--- | |
parameters: | |
- name: variance | |
in: query | |
type: number | |
required: true | |
- name: skewness | |
in: query | |
type: number | |
required: true | |
- name: curtosis | |
in: query | |
type: number | |
required: true | |
- name: entropy | |
in: query | |
type: number | |
required: true | |
responses: | |
200: | |
description: The output values | |
""" | |
variance=request.args.get("variance") | |
skewness=request.args.get("skewness") | |
curtosis=request.args.get("curtosis") | |
entropy=request.args.get("entropy") | |
prediction=classifier.predict([[variance,skewness,curtosis,entropy]]) | |
print(prediction) | |
return "Hello The answer is"+str(prediction) | |
@app.route('/predict_file',methods=["POST"]) | |
def predict_note_file(): | |
"""Let's Authenticate the Banks Note | |
This is using docstrings for specifications. | |
--- | |
parameters: | |
- name: file | |
in: formData | |
type: file | |
required: true | |
responses: | |
200: | |
description: The output values | |
""" | |
df_test=pd.read_csv(request.files.get("file")) | |
print(df_test.head()) | |
prediction=classifier.predict(df_test) | |
return str(list(prediction)) | |
if __name__=='__main__': | |
app.run(host='0.0.0.0',port=8000) |
Comments
Post a Comment